
c 

C rc 
p\ 

2 c. 
c 
2 

< 

< 

ITTEE 

TECHNICAL NOTE 2301 

LINEARIZED SOLUTION AND GENERAL PLASTIC BEHAVIOR 

OF THIN PLATE WITH CIRCULAR HOLE 

IN STRAIN-HARDENING RANGE 

By M. H. Lee  Wu 

Lewis Flight Propulsion Laboratory 
Cleveland, Ohio 

Washing ton 

March 1951 



IMTI0NA.L 

LINEARIZrn 

* OF 

ADVISORY COMMITTj?X FOR AERONAUTICS 

TECB1\TICAL NOTE 2301 

SOLUTION AND GENERCU; PLASTIC BEHAVIOR 

THIN PLATE WITH CIRCULAR HOWE 

IN STRAIN-JBXDENIXG RANGE 

By M. E. Lee Wu 

SUMMARY 

A l inearized solution is obtained for  the problem of p las t ic  
deformation of a t h i n  p la te  with a circular  hole i n  the s t ra in-  
hardening range. 
of p l a s t i c i tg  f o r  f i n i t e  strains. 
l inear  d i f f e ren t i a l  equatzons obtained previously are linearized 
by replacing the nonlinear terms with a simple l inear  term involving 
a constant, which is determined by minimizing the e f fec t  due t o  the 
l inearization. 
a given material and a given maximum s t r a i n  can be obtained through 
a slmple multiplication by means of the tables  presented herein. 
Eqmticns f o r  s t r e s s  and s t r a i n  concentration factor  a re  a l so  given. 

Numerical examples are calculated by the  l inear ized method. 

This solution is based on the deformatiop theory 
The two final simultaneous rick- 

Stress and s t r a i n  dis t r ibut ions of the problem f o r  

calculations are a lso  made for ideal ly  p l a s t i c  materials and fo r  a 
power-law approximation. 
s t r e s s  is  a l so  presented herein. The results obtained by different  
methods are compared and the  following conclusions were obtained: 

A n  approximate method of solution fo r  

1. The r e su l t s  obtained by the  l inear ized method compare closely 
with those obtained previously without l inearization. 

2. The var ia t ion of a parameter determined from the  octahedral, 
shear s t ress -s t ra in  curve of the  material can be used as a simple 
general c r i t e r ion  of appl icabi l i ty  of deformation theory for  t h i s  
problem. 

3. The r a t io s  of the s t r a ins  along the radius t o  t h e i r  maximm 
values and the r a t i o  of principal stresses a r e  essent ia l ly  independent 
of the octahedral shear s t ress -s t ra in  curve of the material, but the 
s t r e s s  dis t r ibut ions a re  very dependent on the material. 
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4, The solution f o r  ideally p las t ic  material with the inf ini tes-  
i m a l  s t r a i n  concept gives good approximate values of strains, but 
not of stresses. 

5. Sufficiently accurate values of principal s t resses  can be 
obtained bx using the s t r a ins  determined by the ideally p las t ic  
approxima-tion together with the actual  octahedral shear s t ress -s t ra in  
r e l a t ion  of a given material. 

6. If a simple anala%ical function representing the octahedral 
shear s t ress -s t ra in  re la t ion  i s  required for analysis, t he  power-law 
approximation can be used. 

INTRODUCTION 

In  the design of highly stressed machine parts,  knowledge of 
the s t r e s s  and s t r a i n  concentration due t o  a hole and also of the 
dis t r ibut ions of s t resses  and s t ra ins  i n  the strain-hardening range 
is desirable. The solution f o r  a t h i n  plate  w i t h  a c l rcular  hole 
f o r  ideally p las t ic  rnaterial under id in i t e s ima l  s t r a i n  has been 
obtained by Ngdai (reference 1, page 189). The same problem has 
been solved (reference 2 )  i n  the strain-hardening range by using 
the deformation theory of p l a s t i c i ty  and employing Yne f i n i t e -  
s t r a i n  concept; numerical r e su l t s  were obtained fo r  two materials 
i n  reference 2. Because of the nonlinearity of the equations, 
however, the r e su l t s  were more o r  l e s s  limited t o  the two particular 
Illaterials used i n  the calculation. I n  order t o  obtain general 
information applicable to  most m t e r l a l s ,  it is desirable 'to inves- 
t iga te  the possibi l i ty  of l inearizing the equations. 
solution w i l l  also greatly reduce the amount of calculation required 
fo r  a giTren case. 

A linearized 

, 
Generalization of these r e su l t s  a l so  has theoret ical  signif-  

icance i n  the theory of p las t ic i ty  i n  tha t  a general c r i t e r ion  of 
the appl icabi l i ty  of the deformatiy t'leory may be obtained. 
theory, formulated by Hencky and N a d a i  (reference 3) ,  states tha t  
the state of stress i s  a unique function of the state of s t r a i n  when 
the directions and the  r a t io s  of the pr incipal  s t resses  remain constant 
durirqloading i n  the absence of t i m e  _and temperature e f fec ts  q d  of 
unloading. 
versible processes, that the p las t ic  s t ra ins  a t  a cer ta in  s t a t e  depend 
on t l e  path by which that state is reached. 
the relat ions between the s t a t e  of s t r a i n  and s t r e s s  are Unique if 
the material  i s  isotropic before loading, as i s  generally assumed. 
Experiments on t h i n  tubes (references 4 t o  10) show tha t  the 
relat ions between the s t r a i n  and the  stress fo r  the different  

This 

It is t rue for plas t ic  deformations, which are i r r e -  

For a par t icular  pat'n, 
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paths, each under a constant r a t i o  of principal s t resses  (a lso con- 
s tan t  direct ions) ,  a r e  close. The resu l t s  obtained by the deformation 
theory therefore hsve phjrsical. significance if the previously mentioned 
conditions (the directions and the r a t io s  of principal s t resses  remain 
constant during loading) a re  sat isf ied.  No inconsistency ex is t s  i n  
the deformation theory if it is used f o r  the cases where these con- 
di t ions are fu l f i l l ed .  Even with considerable variation of the r a t i o s  
and directions of principal s t resses  during loading, the s t r a ins  
experimentally obtained were i n  good agreement with the s t r a ins  pre- 
dicted by use of the deformation theory, as shown i n  references 9 
(p. 199), 10 (pp. 213-E), and 11, and a l so  i n  experimental work 
presented by the MACA a t  the Third Symposium on P la s t i c i ty  a t  
Brown University. Further experimental investigation i s  needed t o  
detemnine the extent t o  which the variations of directions and r a t i o s  
of principal s t resses  a re  permissible. If the var ia t ion is small, 
however, the deformation theory can be expected t o  give good resu l t s .  

The simplicity of the s t ress -s t ra in  re la t ion  given by the 
deformation theory minimizes the  d i f f i c u l t i e s  of solving concrete 
problems; it is therefore of both theoret ical  and pract ical  importance 
t o  investigate the circumstances (s t ress-s t ra in  curves of materials, 
loading conditions, boundary conditions, and geometry of the members) 
under which the deformation theory applies. 

SYMBOLS 

The following spnbols a re  used i n  t h i s  report: 

coefficients of nonlinear d i f f e ren t i a l  equations; functions 
of u and y 

inner radius of hole 

outer radius of f l a t  r ing 

outer radius of plate ,  very large compared with radius 

functions of a 

instantaneous thickness of plate  

i n i t i a l  thickness of p la te  

a 

instantaneous length 
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m 

n 

r radial coordinate 

U radial displacement 

a 

parameter re la t ing  t o  s t r a i n  hardening 

parameter re la t ing  t o  c r i t e r ion  of appl icabi l i ty  of 
deformation theory 

parameter indicating r a t i o  of principal stresses 

Y octahedral shear s t r a i n  

f logarithmic s t r a i n  (or  natural s t r a in ) ,  logarithm of instan- 
taneous length divided bg i n i t i a l  length of element 

9 angular coordinate 

Q normal t rue s t r e s s ,  force per un i t  instantaneous area 

7 octahedral shear s t r e s s  

Subscripts; 

0 a t  inner radius of hole 

b,c a t  r a d i i  b and c,  respectively 

j principal direct ion in  general 

r , e ,z  principal directions i n  cylindrical  coordinate system ' 

BASIC EQUATIONS 

A t h i n  in f in i t e  p la te  uniformly stressed i n  i ts  plane i n  a l l  
directions and having a c i rcu lar  hole is shown i n  figure 1. 
whole system is equivalent t o  a very large c i rcu lar  p la te  of 
radius c w i t h  a small concentric c i rcular  hole subjected rad ia l ly  
t o  the same uniform stresses  (3 on the outer boundary. The 
solution obtained i n  such a p la te  within any radius can be a l s o  
considered as a solution of a f l a t  r ing with inner radius a and 
outer radius b 
radial stress 0% obtained i n  the p la te  solution. A small element 
defined by 88 and A(r+u) taken a t  radius (r+u) in the deformed 
state is a l so  shown i n  f igure 1. I n  the d e f o r m e d  state, the,same 

The  

b 

loaded uniformly a t  the  outer boundary with the 
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element would be a t  radius r and defined by A 6  and A r .  Also 
shown i n  figure 1 are  the instantansous thickness of the element 
an4 the s t resses  acting on the element, 

The s t r e s s  
fo r  the case of 

and s t r a i n  relations based on the deformation theory 
plane plas t ic  s t r e s s  a re  

+ c r  + C Z  = 0 (1) 

t 

where T(y) is an experimentally determined function. The con- 
s tan ts  1/2 and 1/3 i n  equations (4) a re  determined from the condition 
defined by equation (1) and one of the equation (2). 
of these given equations a re  therefore independent. 

Only f ive  

The f in i t e - s t r a in  concept (references 3 and 12), which considers 
the instantaneous dimensions of the element, i s  usedbeeause W g e  
deformations i n  the  strain-hardening range w i l l  be considered. 
s t r e s s  is then equal t o  the force divided by the instantaneous area, 
and the s t ra ins  are  defined by the  following equations: 

The 
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where Z j  
original  length of ( 2  ) and 3 is  any principal direotion, The 
octahedral shear s t resa-s t ra in  re lat ion,  the value of octahedral 
shear s t ra in ,  and the value of the principal strains are defined by 
the i n i t i a l  and final s t a t e s  f o r  the paths along which the r a t i o s  of 
principal s t resses  remain constant during loading (reference 2); 
thus, 

1s the instantaneous length of an element having the 

3 0  

The s t r a i n  given by th i s  equation has 
s t r a i n  or  natural  atrain" (references 
displacement re la t ions of the element 

been referred t o  as ''logarithmic 
3 and 12) .  The s t ra in-  
shown i n  figure f are  

€e r+u e = -  
r 

(54 h 
h i n i t  

The equations of equilibrium and compatibility after the elim- 

ecz re - 

ination of the displacements and C z  (obtained i n  reference 2)  
are  as follows: 

'r - €e  
e - 1  
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or  

(7) 

Qr = g T  ( e s i n  a - cos a) 

ge = @ 7 (fi s i n  a + cos 

and 

The parameter 
stresses o ~ / u ~ .  From equation (7), 

u is closely related t o  the r a t i o  bf p r i n c f p l  

or & - s i n  a - cos a 
5 = 6 s i n  a + cos a 

This re la t ion is plotted i n  figure 2 for  the range of a encountered 
i n  the present problem. 
l inear i ly  with a, The percentage variation of a during loading 
w i l l  then indicate direct ly  the same percentage variation of Or/Ue. 
When t h i s  tranefomaation is wed, the equations of the problem are  
then reduced t o  two nonlinear d i f fe ren t ia l  equations with an exper- 
imentally determined relat ion between 7 and 7. 

It is seen that Ur/Ue varies almost 

where 
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A =  cos a + s i n  a, ) - ( p s i .  u - cos 

c =  COS a) exp (- CY cos .) 
D = {fi s i n  a - COS a ) y 

E = - ( f l c o s  a + s i n  a) 

F = 2 f i k  - exp (- q y  cos aj”) 

From equations (9), there is obtained 

If a, is considered as an independent variable, the calculation 
can be greatly reduced because many terms i n  the equations are 
trigonomstric functions of a; that is, 

J 9 FA - CD 
da CE - FB 

using equations (sa) and expanding exp (- ~y ooe u) into a 

aeries gives 
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where 

H = COS u 

J = m s i n  u - COS u 
L = f i  cos a + sin a 

and . 

LINEARIZATION OF BQUATIOTJS 

Substituting equatione (loa) into equations (10) yields the 
follow ing quat ions : 
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( 11% 1 
It is seen i n  the previous equations that always occurs i n  

the combination 7' E. When a T(y)  curve of a material is plotted 

i n  logarithmic male ,  the slope of the curve a t  any value of 
Jr dY 

y is 

d loge 7 1 - d? 
d loge? dy 

The slope 2 i n  the lo@;arithmic plot t ing is a function of y .  

The use of the power function re la t ing  t o  the octahedral shear stress 
and s t ra in ,  which approximates the actual  octahedral shear s t ress-  
s t r a i n  re la t ion  of a given material over the strain-hardening range, 
w i l l  be subsequently shown t o  give r e su l t s  approximately the eame as 
those obtained by using the actual  octahedral shear s t ress -s t ra in  
curve of the material. The power-function r e l a t ion  (or power-law 
apgroximation) can be represented by the following equation: 

7 dY 

or  

Z - , m  d? 
d7 

where K and m are  constants through the strain-hardening range. 
I f  equation (12) is used only t o  represent the T and y yelation 
fo r  the range of 
can be expected, 
value of m f o r  one material is different  f o r  d i f fe ren t  loads. 
When the value of y 
of y can be estimeed because the values y o / n  a r e  qui te  close 
f o r  d i f fe ren t  cases (reference 2) .  The value of m is then simply 
the slope of a atraight  line that  approximates the T ( 7 )  curve of 
the actual  material plotted i n  the logarithmic scale  f o r  the 
range t o  yo. The t e rn  2 d7 i n  equations (11) can then be 

replaced by m. 

7 
It should be emphasized i n  euch a case that the 

along the radius of the plate ,  accurate r e su l t s  

is decided fo r  any calculation, t he  range 

7 dY 
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A comparison of the t e r n  i n  equation8 ( l l a )  and (1171) with 
the numerical data, obtained i n  reference 2 shows t h a t  

Equations (11) can therefore be linearized by replacing the term 

3 1: L by a constant C1, which is 80 determined that the effect  CJ 70 

on 4 due t o  s & l a c i w  by C1 and neglecting 
da 

1 2 2 -  the terms (- H 7  + - H 7 . . .) i n  equation ( l l a ) ,  as  well  -& 
as the effect  on loge due t o  replacing by C1 and 

da 

(- " p H 7  + H2y2- . . .) i n  equation (llb), is very a m l l .  
2 2  

Equations (11) are then writ ten i n  the following form: 

Let 

n = m - C 1 r o  
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then 

In  equations (15) a l l  term under the integral  sign a re  functions 
of a except n, which is a constant. The values o f "  r/a and 
7/T0 corresponding t o  a f o r  various values of n can therefore 
eas i ly  be calculated by numerical integration. The constant C 1  i n  
equation (14) can be determined e i the r  by comparing the variations 
of a and 7/70 with r/a for  different  values of n calculated 
from equations (15) w i t h  those obtained i n  reference 2, o r  by com- 
paring the terms i n  equations (11). (Because the re la t ions  of the 
variables a, 7 / ~ ~ ,  and r/a f o r  d i f fe ren t -cases  obtained i n  
reference 2 are  very similar, any available re la t ions  of' these 
variables for  the problem can be used t o  compare the terms i p  equa- 
t ions (11) i n  determining the coastant Cl.) The value o f .  C1 w a 8  
found t o  be 0.7 by the first, method. Thus, 
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With t h i s  method, the values of r/a and y l y o  corresponding 
t o  a f o r  a number of values of n can easily be calculated and 
given i n  both curve and tabular  form t c  f a c i l i t a t e  s o h t i o n  of t h i s  
problem f o r  a given material under a given maximum s t ra in .  

DETERMIHATION OF PRINCIPAL STRESSES AND S!T!R&CNS 

A f t e r  the var ia t ion of a and y / y o  with r/a is determined 
by the manner previously described, the pr incipal  stresses and straim 
can be obtained by equations (7) and (8) w i t h  the actual  7 ( y )  
of a given material. It is seen from the equations that € r / Y y  
e e / y ,  or/?, and U6,h are  functions of a only; they can be cal- 
culated for  different  values of a and given i n  tabular form t o  
f a c i l i t a t e  solution of any given case, 
be writ ten as 

curve 

Equations (7) and (8) can 

( 7 4  

urp = # ( q / ~  s i n  a - cos a) 

ueb = $ (F  s i n  a + cos a) 

The value of principal stresses and strains can be then obtained only 
by a simple multiplication. 

The method of determining the d is t r ibu t ion  of a, y / y o ,  ury 
a$, C y '  
solution. 

and c 8  along r/a w i l l  be designated the l inearized 

STRESS AND STRAIN COI'K!ENTRATION FACTORS AT HOLE 

The stress and s t r a i n  concentration factore are defined aa the 
r a t i o  of tangential  stresrJ and s t r a i n  at  the hole t o  the tangential  
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stress and s t r a i n  a t  r = c,’ respectively, with c/a much greater 
than 1. For the previously described loading condition, the values 
of a a t  boundaries a re  as follows: 
a t  r = a, 

U r  0 
n a. = - 
6 

a t  r = e, 

x uc = - 
2 

From equation (7 ) ,  the stress concentration factor  is 

From equation (8), the s t r a i n  concentration factor  is 

The stress and s t r a i n  concentration factors  were experimentally 
determined i n  reference 14 f o r  a tension panel with a c i rcu lar  hole. 
An approximate equation of stress concentration factor f o r  the same 
problem was given i n  reference 15. 

IDEALLY PLASTIC AND APPROXIMATE SOLUTION 

When n = 0, equationa (15) become 
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cos % + s i n  f i (a0 - a> 
e Y - -  

Y, - @cos ct + s i n  a 

For ideally p las t ic  m t e r l a l  when the infinitesimal s t r a i n  concept 
is  erqlog-ed, m = 0 and yo is infinitesimal;  n is then equal t o  
zero, t h i s  being the special  case of n = 0. 
sanze,relaticn between r/a and a as i n  equation (17a) was obtained 
b; Xadai (reference 1). 

For t h i s  case, the 

The var ia t ion of a and y / y o  with r/a f o r  a material  with 

n f 0 can be determined approxhately by equations ( 1 7 ) .  
imation, however, is  used only t o  determine s t r a ins  Q y  and E g 

because the s t ra ins  a re  functions of a, and y only. The s t resses ,  
whick are functiozs of a and 7, can be determined by the approx- 
irmte values of a and y / y o  with the actual  7 ( y )  curve of the 
material. This method w i l l  be designated the approximate solution. 

!Chis approx- 

CALCULATIONS, RESULTS, AND DISCUSSION 

I n  order t o  observe the degree of approximation resul t ing from 
the use of a power function representing the octahedral shear s t ress -  
s t r a i n  re la t ion  over the whole strain-hardening rawe, a calculation 
is made with the following r e l a t ion  between 7 and y: 

0.2s 
7 (7) = 126,000 y 

The constants 126,000 and 0.25 are chosen i n  order t o  agproximate 
the T(Y)  curve of Inconel X over the whole strain-’mrdening range 
(fig.  3). The variations of a, y ,  g r ,  0 0 ,  cr, and c e with r/a 
fcr yo = 0.3 obtained by the power-law approximation a r e  compared 
w i t h  t h e  values obtained f r c m  the actual  
i n  figure 4. These curves a re  seen t o  agree w e l l .  This r e s u l t  
indicates that. the method used t o  l inear ize  

~ ( y )  curve of Inconel X 

z d7 i n  equations (11) 
7 dY 
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should introduce very l i t t l e  error .  Also, if a simple analyt ical  
function of 7(7) is desired i n  the analysis, t h i s  simple form 
T ( y )  '= Kym representing the T and y r e l a t ion  of a given material 
w i l l  give a very good approximation, 

The values of r/a and y / y o  corresponding t o  a are cal- , 

culated f o r  n = -0.15, -0.1, 0 ,  0.1, 0.2, 0.3, and 0.4 f romthe 
linearized equations (15). The variations of a and 7/70 with 
r/a fo r  d i f fe ren t  values of n a re  plotted i n  figure 5 and a re  
tabulated i n  table  I. The curves of a and y / y o  against  r/a 
obtained i n  reference 2 f o r  Inconel X and 16-25-6 are plotted i n  
figure 6; the values of n f o r  these cases are calculated from 
equation (14a) and are  a l so  indicated on these curves. The curves 
obtained from the linearized solution (Fig. 5) ,  which have values 
of n close t o  the values of n of the curves obtained from ref- 
erence 2 ,  a r e  a l so  plotted on figure 6 fo r  comparison. It can be 
seen that the r e su l t s  fo r  the same n of the two solutions agree 
very w e l l  f o r  most cases. For simplicity, the solutions obtained 
in  reference 2 based on the deformation theory a re  designated the 
exact solution. The simple re la t ion  n = m - 0.7 y o  can then be 
used a s  a good approximate c r i t e r ion  t o  find the dis t r ibut ions of 
a and 7 / y 0  w i t h  r/a f o r  different  materials and d i f fe ren t  max- 
imum s t ra ins .  T h i s  generali ty has a very important consequence, 
because it leads t o  a general c r i te r ion  of appl icabi l i ty  of the 
deformation theory of p l a s t i c i ty  f o r  any material in  the s t ra in-  
hardening range f o r  t h i s  problem. The c r i t e r ion  now is that if the 
value of n fo r  a given material is constant or approximately 
constant i n  the strain-hardening range, the deformation theory can 
be applied t o  the proklem fo r  t h i s  material. For the special  case 
of infinitesimal s t ra in ,  the condition that n ie; constant reduces 
t o  the  condition tha t  m i s  constant, which is the sane condition 
obtained by Ilyushin (reference 16). 

The maximum variat ion of a a t  any r/a is less  than 10 per- 
cent f o r  a var ia t ion of n from -0.15 t o  0.4 ( f ig .  5(a)) .  Because 
fo r  most materials m increases with y ,  it can be seen from equa- 
t i on  (14a) that m and yo a f fec t  n i n  an opposite manner, so 
tha t  the variation of n with s t r a i n  is small. The value of n 
fo r  most materials and f o r  any s t r a i n  varies from -0.1 t o  0.25 
(references 17 t o  1 9 ) ;  only a small par t  of t h i s  var ia t ion is due 
t o  var ia t ion with s t r a i n  f o r  a given material, 
during loading w i l l  then be expected t o  be very small f o r  dnoet 
materials; consequently, the deformation theory of p l a s t i c i ty  is 
applicable within Gngineering accuracy t o  th i s  problem. 

I 

The variations of a 
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It is a l so  interest ing t o  note the variations of 7/7 ,  with 
r/a f o r  d i f fe ren t  values of n. From f igure 5(b) the curves of 
y / y o  against  r/a near the hole, which is the region of interest, 
a re  close f o r  values of n from -0.15 t o  0.4. 

The values of Q r/7, Q , € r / y ,  and ce /7  were calculated 
by equations (7a) and (sa) f o r  the range of 
( table  11). 
were obtained by the l inearized solution f o r  the following cases: 
yo = 0.1871, Inconel X; yo = 0.3000, Inconel X; 
16-25-6. 

a, considered 
The dis t r ibut ions of principal s t resses  and strains 

asld yo = 0.4600, 
The r e su l t s  are plotted i n  figure 7 with results obtained 

17 

i n  reference 2 f o r  comparison. 
and yo = 0.4600, 16-25-6 a re  chosen because they show the greatest  
deviation i n  a, and 7/70 between the l inearized and the  exact 
solutions. The example of yo = 0.1871, k c o n e l  X is chosen because 
it has an average agreement between the two solutions, The(va1ue 
of n f o r  t h i s  case is equal t o  0.151; a and y / y o  a t  cor- 
responding values of r/a can be obtained from tab le  I by l inear  ’ 
interpolation. The dis t r ibut ions of principal stresses and s t r a ins  
obtained by the lineari’zed solution agree very well with those 
obtained by the exact solution even f o r  the case cf 
16-25-6 f o r  which the agreement i n  y /yo  between the two solutions 
( f i g .  61 is l eas t ,  

The examples yo = 0.3000, Inconel X, 

yo = 0.4600, 

Calculations were a l so  made f o r  the case of ideal ly  p las t ic  
material ( 7  =.constant) with the infinitesimal s t r a i n  concept. . 

The variations of a and y / y o  with r/a are the same as fo r  the 
case of n = 0 ( f ig .  5).  Tne dis t r ibut ions of principal s t r a ins  
were calculated f o r  yo equal t o  0.1871 and 0.4600 ( f ig .  8). The 
curves obtained by the exact solution for yo = 0.1871, Inconel X,  
and yo =. 0.4600, 16-25-6 a re  a l so  plotted i n  t h i s  f igure.  These 
two cases a re  chosen because the CL alld y / y o  curves deviate most 
from the curves of n = 0 ( f ig .  ti). From the curves of a &nd r/ro 
against r /a  of n = 0 and the actual  T ( r )  curve of Inconel X and 
16-25-6, the dis t r ibut ions of pr incipal  stresses are calculated fo r  
the cases of yo = 0.1871 and 
procedure gives t h e  approximate solution. 

yo = 0.4600, respectively; t h i s  

The principal s t resses  are also calculated f o r  the ideally 
p las t ic  materials. I n  t h i s  case 7 = constant and is chosen equal 
t o  the value of T~ 

These dis t r ibut ions of principal s t r e s s  alo-ag the radius, as well 
f o r  which the solutions are being compared. 
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as those obtained by linearized and exact solutions a re  plotted fo r  
comparison i n  figures 9(a) and 9(b) for  and 
f o r  yo = 0,1871, Inconel X, respectively. It can be seen from 
figure 8 that the principal s t r a ins  obtained by the  ideal ly  p las t ic  
material w i t h  the infinitesimal s t r a i n  concept (which is the same 
case a s  the approximate solution) gives good approximate resu l t s .  
A s  shown i n  figure 9, however, the pr incipal ' s t resses ,  especially 
the tangential  s t r e s s  (the most important par t  of the solution),  
obtained by the ideally p las t ic  material a r e  not good enough t o  
approximate the actual  r e su l t s  no matter which value of 7 is 
used. with s l igh t  modification as described i n  tile approximate 
solu.tion (using a and 7/ro f o r  n = C and the actual  7 (7) 
re la t ion  of the material) ,  the principal s t resses ,  especially the 
tangential  s t r e s s ,  obtained agree much be t te r  w i t h  the exact 
solution. This  simple approximate methcd can therefore give good 
resul ts .  It a lso  indicates t ha t  the r a t i o  of the s t r a ins  along 
the radius t o  the maximum value and the r a t i o  of principal s t resses  
are essent ia l ly  independent of the 7 (7) curve of the material and 
t'ne maxirnwn strain of the plate ,  but the stresses a re  very much 
dependent on the 7 ( y )  curve of the material. T h i s  r e s u l t  not only 
further confirms the conclusions obtained i n  reference 2 ,  but a l so  
generalizes those resu l t s  t o  most materials ( t h a t  is, not limited by 
the T ( 7 )  curves of Inconel X and 16-25-6 previously investigated). 

yo = 0.4600, 16-25-6, 

All the  r e su l t s  and discussions are t rue  only for  t h i s  problem 
under p l a s t i c  deformation i n  the strain-hardening range i n  which t h e  
e l a s t i c  s t ra ins  are small compared w i t h  the  p l a s t i c  s t ra ins ,  and 
neither time and temperature effects  nor unloading a re  present. 

COl~CLUS IONS 

Tlis r e su l t s  obtained for a t h i n  p l a t e  with ci rcular  hole i n  the 
strain-hardening range, i n  which the e l a s t i c  s t r a i n  is small compared 
w i t h  the p l a s t i c  s t ra in ,  show that: 

1. The r e su l t s  obtained by the linearized solution agree very 
well w i t h  those obtained br the exact solution based on the d e f o m t i o n  
t'neorg of p las t ic i ty .  
much reduced by the l inearization. 
sented herein, the dis t r ibut ions of octahedral shear s t r e s s  and s t r a i n  
as well as the principal s t resses  an& s t ra ins  can be'obtained for 
a given material under a given maxhm s t r a i n  of the  p l a t e  by a simple 
aul t ipl icat ion.  

The amount of computation required is very 
With the tables o r  curves pre- 
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2. The var ia t ion of a parameter determined from the octahedral shear 
s t ress -s t ra in  curve of the material can be used as a simple general 
c r i t e r ion  of appl icabi l i ty  of deformation theory f o r  t h i s  problem. 

3. The r e su l t s  previously obtained f o r  Inconel X and 16-25-6 
were extended t o  most materials: 
along the radius t o  the maximum value and the r a t i o  of pr incipal  
s t resses  a re  essent ia l ly  independent of the octahedral shear s t ress -  
s t r a i n  curve of the material, but the s t r e s s  dis t r ibut ions a re  very 
depen3ent on the material. 

namely, the r a t i o s  of the s t r a ins  

4. The resu l t s  obtained f o r  the ideally p las t ic  material with 
the infinitesimal s t r a i n  concept give good approximate values of 
principal s t ra ins ,  but not of principal stresses.  

5. Suff ic ient ly  accurate values of principal s t resses  can be 
obtained by the approximate method cf using the s t r a ins  obtained by 
the ideal ly  p las t ic  material, together with the actual  octahedral 
shear s t ress -s t ra in  re la t ion  of the matsrial. 

6. If a simple snalyt ical  function representing the octahedral 
shear s t ress -s t ra in  re la t ion  is required f o r  analysis, the  power-law 
approximation can be used. 

Lewis Flight Propulsion Laboratory, 
lk t iona l  Advisory Committee f c r  Aeronautics, 

Cleveland, Ohio, September 20, 1950. 
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0 

(b) Flat r i n g  radially 
stre ssed. 

( c )  Element of thin plate.  

Figure 1. - Thin inf in i te  plate with circular hole, f l a t  
ring, and i t s  element i n  deformed s t a t e .  
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Parameter , a 

ameter a .  
Figure 2. - Variation of r a t i o  of principal stresses or/a8 w i t h  par- 
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(a) Linear-scale plot. 
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(b) Logarithmic-scale plot. 

Figure 3. - Octahedral shear stress-strain curves. 
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Proportionate rar3ial distance, r/a 

(a) Variation of parameter 3 with proportionate radial distance. 

27 

Tigure 4. - Comparison of results obtained for z ( y f  curve of Incanel X 
and power-function spprcximation z(y) = 1 2 6 , b O O  yo = 0.30.t 



28 

d 
rd 
k a 

0 
0 

NACA TN 2301 

Proportionate radial distance, r/a 
(b) Variation of octahedral shear strain with proportionate 

radial distance. 
Figure 4. - Continued. Comparison of results  obtained for T( ) curve of 

8.25 Inconel X and power-function approximation ~ ( y )  - 126,000 y . 
yo = 0.30. 
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Proportionate radial  distance, r/a 
( c )  Variation of principal s t resses  w i t h  proportionate 

r ad ia l  distance. 
Figuiae 4. - Continued. Comparison of r e su l t s  obtained for  ~ ( y )  curve of 

. Inconel X and power-function approximation ~ ( y )  = 126,000 
yo = 0.30. 
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Proportionate radial distance, r/a 
( d )  Variation of principal strains with proportionate 

radial distance. 

Figure 4. - Concluded. Comparison of results obtained for ~ ( y )  curve of: 
Inconel X and power-function approximation ~ ( y )  = 126,000 
yo = 0.30. 
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Figure 5 .  - Concluded. 
strain a t  hole y/y 
ues of n. 

Variation of parameter a and the rat io  of octahedral shear strain to octahedral shear 
with proportionate radlal distanae r/a obtained by linearized solution for various val- 
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Figure 6. - Comparison of variation of parameter a and rat io  of octahedral shear strain to octahedral shear 
strain a t  hole y/y 
solution. 

with proportionate radial distance r/a obtained by linearized solution and by exact 
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( c )  Variation of rat lo  a octahedral shear strain to  aoaximum octahedral shear strain a t  
hole y/y, with proportionate radial distance; Inconel X. 

Figure 6. - Continued. Comparison of variation OZ parameter a and r a t i o  of octahedral shear strain to  octa- 
hedral shear strain a t  hole y/yo with proportionate radial distance r/a obtained by linearized solution and 
by exact solution. 
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(d)  Variation of ratio of octahedral shear strain to the octahedral shear strain a t  
hole y/yo with proportionate radial distance; 16-25-6. 

FYgure 6. - Concluded. 
hedral ahear strain a t  hole y/yo with proportionate radial distance r/a obtained by linearized solution and 
by exact solution. 

Comparison of variation of parameter a and rat io  of octahedral ahear strain to octa- 
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Fiaure 7. - Comparlsan of p r i n c i p a l  stresses and s t r a i n s  Obtained by I8nea.rlred solut io0 and exact s o l e t i o n .  
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Proportionate radial di stance, r l a  

( b )  Variation a1 principal stresses w i t h  proportionate radlal dlstance. 

Comparison of  prlnc#pal stresses and strains obtained by linearized solution and exset solution. FiOure 7. - bneluded. 

z1N 2301 
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Pr 

Figure 8. - Comparison o f  d i s t r i b u t i o n s  of p r i n c i p a l  s t r a i n s  aI mg Proportionate r a d i a l  distance cbtained by approxi- 
mate solutton and I d e a l l y  p l a s t l c  with exact solut ion.  
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( b l  - 0.1871. Inconel X. 

Figure 9. - Concluded. Camparlson of distributions of principal stresses aim0 proportionate radial 
distance Obtained by different methods. 
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